Equivariant Minimal Surfaces in Complex Hyperbolic Spaces

Cordelia Webb

April 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Technical beginnings: Equivariant Minimal Surfaces

Let Σ be a closed, oriented surface of genus $g \geq 2$.

Let \mathbb{CH}^n be n-dimensional complex hyperbolic space considered as $\mathbb{PC}^{n,1}_-$ equipped with

$$\langle v, v \rangle = \sum_{i=1}^{n} v_i \overline{v}_i - v_{n+1} \overline{v}_{n+1}.$$

PU(n,1) is the group of orientation preserving isometries of \mathbb{CH}^n .

Technical beginnings: Equivariant Minimal Surfaces

Let $f : \mathbb{CH}^1 \to \mathbb{CH}^n$ be a minimum immersion, $c : \pi_1 \Sigma \to PU(1, 1)$ be a Fuchsian representation, and $\rho : \pi_1 \Sigma \to PU(n, 1)$ be an indecomposable representation, such that f intertwines the actions of c and ρ :

Definition

An equivariant minimal surfaces in \mathbb{CH}^n is an equivalence class $[f,c,\rho]$

Technical beginnings: Equivariant Minimal Surfaces

Let \mathcal{M} be the moduli space of \mathbb{CH}^n equivariant minimal surfaces:

$$\mathcal{M} = \{[f, c, \rho]\}$$

Corlette proved we have an injective map:

$$\mathcal{M} \to \mathcal{T}_g \times \mathcal{R}(\pi_1 \Sigma, PU(n, 1))$$

[f, c, ρ] \mapsto ([c], [ρ])

where \mathcal{T}_g denotes Teichmüller space and $\mathcal{R}(\pi_1\Sigma, PU(n, 1))$ is the character variety

What you need to know: Equivariant Minimal Surfaces

We want to know all the different ways a complex line can be embedded in n-dimensional complex hyperbolic space while minimising its area.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The useful bit from the 80s: Non-Abelian Hodge Theory

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The other useful bit from the 80s: NAH+

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ≧ ○ � � �

Another scary technical slide: Harmonic Sequence

Let *L* be take the tautological line subbundle of the $\mathbb{C}^{n,1}$ trivial bundle over \mathbb{CH}^n with canonical flat connection ∇' . $f = f_0 : \Sigma \to \mathbb{CH}^n$ pulls *L* back to a holomorphic line subbundle ℓ_0 of the trivial bundle $\Sigma \times \mathbb{C}^{n,1}$ with a flat hermitian connection ∇ . Define

$$\begin{aligned} A_0 : \ell_0 \to \ell_0^\perp \otimes \mathcal{T}_{1,0}^* \Sigma \\ \sigma_0 \mapsto \pi_0^\perp \nabla_Z(\sigma_0), \end{aligned} \tag{1}$$

Similarly, let

$$\overline{A}_{0}: \ell_{0} \to \ell_{0}^{\perp} \otimes T_{0,1}^{*}\Sigma
\sigma_{0} \mapsto \pi_{0}^{\perp} \nabla_{\overline{Z}}(\sigma_{0}).$$
(2)

Provided $A_0 \neq 0 \neq \overline{A}_0$, they define unique complex line bundles ℓ_1 and ℓ_{-1} corresponding to functions $f_1, f_{-1} : \Sigma \to \mathbb{PC}^{n,1}$. Everything works: Harmonic Sequence

Lemma If f_0 is harmonic, then so are f_1 and f_{-1} .

Inductively, we continue to define maps A_i and \overline{A}_i and successively build up harmonic maps $\{f_i : \Sigma \to \mathbb{PC}^{n,1}\}$.

Definition

Let $I = \{i \in \mathbb{Z} | f_i \text{ is well defined} \}$, then we call $\{f_i\}_{i \in I}$ a harmonic sequence and $\{\ell_i\}_{i \in I}$ form the corresponding bundle sequence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Some (not-well) hidden Linear algebra: Harmonic Sequence

Definition

If the image of f_0 does not lie in a totally geodesic copy of \mathbb{CH}^k for some k < n, we call f_0 linearly full.

If all elements of the bundle sequence are mutually orthogonal and f_0 is linearly full then the sequence is finite and called **superminimal**.

$$0 \longrightarrow \ell_{p-n} \longrightarrow ... \longrightarrow \ell_{-1} \longrightarrow \ell_0 \longrightarrow \ell_1 \longrightarrow ... \longrightarrow \ell_p \longrightarrow 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Winding back: Non-Abelian Hodge Theory

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Some more long definitions: Higgs bundles

Definition

A **G-Higgs bundle** over a closed Riemann surface X is a pair (E, Φ) where $E \to X$ is a holomorphic principal bundle with a $H^{\mathbb{C}}$ structure for H a maximal compact subgroup of G, and $\Phi: E \to E \otimes K$ is a **Higgs field**, where K is the canonical bundle.

Here we have G = PU(n, 1) so (E, Φ) orthogonally split $E = V \oplus L$ where L is a holomorphic line bundle and V a rank n holomorphic bundle while $\Phi = (\phi_1, \phi_2)$ where $\phi_1 \in H^0(X, \operatorname{Hom}(L, V) \otimes K)$ and $\phi_2 \in H^0(X, \operatorname{Hom}(V, L) \otimes K)$

More understandably: Higgs bundle

A **vector bundle** attaches a vector space to each point of the space.

The Higgs bundles we care about here are vector bundles which consist of a line orthogonal to a (nice) *n*-dimensional space and a map which lets you twist them nicely.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The useful bit of Higgs bundles

There is a \mathbb{C}^* action on \mathcal{M}_{Higgs} given by

$$\mathbb{C}^* imes \mathcal{M}_{Higgs} o \mathcal{M}_{Higgs}$$

 $(z, [(E, \Phi)]) \mapsto [(E, z\Phi)].$

The critical submanifolds of this correspond to **Hodge bundles** which have further splitting:

$$E = V_2 \oplus L \oplus V_1, \qquad \Phi = (\phi_1, \phi_2)$$

and

$$V_2 \otimes K^{-1} \xrightarrow{\phi_2} L \xrightarrow{\phi_1} V_1 \otimes K.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Higgs bundles and Morse theory

Lemma

Every Higgs bundle $(V \oplus 1, \Phi)$ corresponding to $[f, c, \rho]$ can be written as an extension of a Hodge bundle $(V_1 \oplus 1 \oplus V_2, \Phi')$ and lies in that Hodge bundle's unstable manifold.

Instead of considering Higgs bundles, we just need to consider Hodge bundles and an extension $[\alpha] \in H^1(\Sigma, Hom(V_2, V_1))$.

Winding back: Non-Abelian Hodge Theory

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Higgs bundles and Harmonic Sequences

Lemma

The harmonic sequence corresponding to an equivariant minimal surface $[f, c, \rho]$ is superminimal if and only if the PU(n, 1)-Higgs bundle (E, Φ) corresponding to $[f, c, \rho]$ is a Hodge bundle.

So $(V_1 \oplus L \oplus V_2, (\phi_1, \phi_2))$ corresponds to

$$0
ightarrow \ell_{p-n}
ightarrow ...
ightarrow \ell_{-1} \stackrel{\phi_2}{
ightarrow} \ell_0 \stackrel{\phi_1}{
ightarrow} \ell_1
ightarrow ...
ightarrow \ell_p
ightarrow 0$$

A D N A 目 N A E N A E N A B N A C N

Classifying Hodge

Superminimal Harmonic Sequences are classified by (Γ_0, Γ_1) and we cam show that Γ_0 is fixed for a given submanifold so:

(日) (四) (日) (日) (日)

Classifying Hodge

Superminimal Harmonic Sequences are classified by (Γ_0, Γ_1) and we cam show that Γ_0 is fixed for a given submanifold so:

Extensions: Isotropy Order

$$\dots \to \ell_{p-n} \to \dots \to \ell_{-1} \xrightarrow{\phi_2} \ell_0 \xrightarrow{\phi_1} \ell_1 \to \dots \to \ell_p \to \dots$$

The **isotropy order** of a harmonic sequence is the maximum number of consecutive ℓ_i which are orthogonal. The **isotropy order** of a Higgs bundle is the isotropy order of its harmonic sequence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Higgs bundles of every possible isotropy order exist and we can determine the isotropy order from the extension β :

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Higgs bundles of every possible isotropy order exist and we can determine the isotropy order from the extension β :

 $\phi_{21}\beta_1^*\phi_{11}\sigma_0 = \phi_{22}\phi_{12}\sigma_0$ $\phi_{21}\beta_2^*\phi_{12}\sigma_0 = \phi_{22}\partial_1\phi_{11}\sigma_0$ $\phi_{22}\beta_3^*\phi_{12}\sigma_0 = \partial_2\phi_{11}\sigma_0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Extensions: Isotropy Order

Higgs bundles of every possible isotropy order exist and we can determine the isotropy order from the extension β :

・ロト・西ト・山田・山田・山口・

Thank you

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで